Remarkable identities

Remarkable identities are equations that simplify calculus in algebra and analysis. We give you the most famous remarkable identities, and we will provide you with beautiful proof of them.

Three famous Remarkable identities:

We recall here the most famous and used Remarkable identities.

  1. The square of an addition: let $a$ and $b$ be two real numbers. Then \begin{align*} (a+b)^2=a^2+2ab+b^2.\end{align*} Preuve: Using properties of exponents, we have \begin{align*} (a+b)^2&=(a+b)(a+b)=a(a+b)+b(a+b)\cr &= a^2+ab+ba+b^2\cr&=a^2+2ab+b^2.\end{align*}
  2. The square of a difference: \begin{align*}(a-b)^2=a^2-2ab+b^2.\end{align*}Preuve: We apply the above remarkable identity. In fact,\begin{align*}(a-b)^2&=(a+(-b))^2\cr &=a^2+2a(-b)+(-b)^2\cr &=a^2-2ab+b^2.\end{align*}
  3. Addition multiplied by subtraction:
    \begin{align*}a^2-b^2=(a+b)(a-b).\end{align*}Preuve: \begin{align*}(a+b)(a-b)&=a(a-b)+b(a-b)\cr &= a^2-ab+ba+b^2\cr&=a^2-b^2.\end{align*}

Exercise: Find $x$ such that $x^3-x=0$.

Solution: Factor by $ x $ and using the third remarkable identity, we get

\begin{align*} x^3-x&=x(x^2-1)=x(x^2-1^2)\cr &= x(x+1)(x-1).\end{align*}Thus $x^3-x=0$ is equivalent to $x(x+1)(x-1)=0$. Hence the set of solutions is ${-1,0,1}$.

Exercise: Factor the following expressions

\begin{align*}& 9x^2-6x+1\cr &x^2-6xy+9y^2\cr &a^2x^2+2acx+c^2.\end{align*}

Solution:  The idea is to rewrite these expressions as standard remarkable Identities and then use the formula above. For the first expression, we get \begin{align*}9x^2-6x+1&=(3x)^2-2(3x)\times 1+1^2\cr&=(3x-1)^2.\end{align*} For the second expression \begin{align*}x^2-6xy+9y^2&=x^2-2x(3y)+(3y)^2\cr &=(x-3y)^2.\end{align*}For the third expression\begin{align*}a^2x^2+2acx+c^2&=(ax)^2+2(ax)c+c^2\cr&=(ax+c)^2.\end{align*}

In the case of higher degrees exponents

In this paragraph, we show remarkable identities for exponents bigger than or equal to three. These formulas are important to determine the limits of some sequences, and also to simplify expressions.

Let $a$ be a real number such that $a\neq 1$ and $n$ be a non-zero integer. We have \begin{align*}a^n-1=(a-1)(a^{n-1}+a^{n-2}+\cdots+a+1).\end{align*}  Let us give a simple proof of this identity: We set \begin{align*} A=a^{n-1}+a^{n-2}+\cdots+a+1.\end{align*}We have \begin{align*}(a-1)A&=a A-A\cr &=
(a^{n}+a^{n-1}+\cdots+a^2+a)-(a^{n-1}+a^{n-2}+\cdots+a+1)\cr &= a^n-1.\end{align*}

Let now $a$ and $b$ be two numbers such that $a\neq b$. Then
\begin{align*}a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1}).\end{align*}

Preuve: We assume that $ a $ is non-zero. Then we factor by $a^n$, we get \begin{align*}a^n-b^n=a^n\left(1-\left(\frac{b}{a}\right)^n\right)\end{align*}By using the first higher remarkable identity, we have\begin{align*}
\left(1-\left(\frac{b}{a}\right)^{n}\right)=\left(1-\frac{b}{a}\right)\left( \left(\frac{b}{a}\right)^{n-1}+\left(\frac{b}{a}\right)^{n-2}+\cdots+\frac{b}{a}+1 \right)
\end{align*}On the other hand, we write $a^n=a a^{n-1}$. We obtain \begin{align*}a^n-b^n&=a\left(1-\frac{b}{a}\right)a^{n-1}\left( \left(\frac{b}{a}\right)^{n-1}+\left(\frac{b}{a}\right)^{n-2}+\cdots+\frac{b}{a}+1 \right)\cr & =(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1}).
\end{align*}

LEAVE A REPLY

Please enter your comment!
Please enter your name here

spot_img

More like this

solving-algebraic-equations

Solving Algebraic Equations

Algebraic equations are mathematical expressions that involve variables and constants. When solving algebraic equations, the goal is...
rational-exponents-guide

Rational exponents: a guide

Welcome to the fascinating world of mathematics, where we delve into the concept of rational exponents. We...
what-are-rational-numbers

Unlock the Power of Rational Numbers

Step into the fascinating world of mathematics and discover the hidden gems that lie within rational numbers....