How to use mathematical induction?

Date:

Share post:

We teach you how to use mathematical induction to prove algebraic properties. This technique is very useful and simple to use. We offer examples and exercises to help you understand proofs by induction.

Induction reasoning is often used to prove sequence properties.

Learn about how to use mathematical induction

In many mathematical situations, we need to prove a property $P(n)$ for any natural number $n$. In most cases, a direct approach to do this is very difficult. To overcome these difficulties, we mainly use induction reasoning. In fact, we only verify that the property $ P (0),$ for $ n = 0,$ is true. Then assume that $ P (n), $ is true as well. Finally,  verify that $ P (n + 1) $ is also satisfied, that’s all.! We notice that sometimes we verify $P(1)$, mainly if the property $P(n)$ is not defined at $n=0$.

Example: let us show that for any $n\in\mathbb{N},$ \begin{align*}\tag{P(n)} (n+1)!\ge \sum_{k=1}^n k!. \end{align*}

For $n=1,$ we have $(1+1)!=2!\ge 1!,$ hence the property $P(1)$ is satisfied. Assume now, by induction, that $P(n)$ holds. As $n+2>2,$ then \begin{align*}\tag{1} (n+2)!=(n+2)(n+1)!\ge 2(n+1)!.\end{align*}
On the other hand, by adding $(n+1)!$ to the both sides of the inequality $P(n),$ we obatin \begin{align*}\tag{2}2(n+1)!\ge \sum_{k=1}^nk!+(n+1)!=\sum_{k=1}^{n+1}k!\end{align*}
By combining (1) et (2), we obtain \begin{align*} (n+2)!\ge \sum_{k=1}^{n+1}k!.\end{align*}
Thus $P(n+1)$ holds.

Exercises on induction reasoning

In the following exercises, we show you how to use mathematical induction to prove some known formulas and inequalities.

Exercise: Prove by induction that \begin{align*} A_n&=1+2+\cdots+n=\frac{n(n+1)}{2}\cr & B_n=1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}.\end{align*}

Proof: We have $A_1=1=\frac{1(1+1)}{2},$ it is true. Assume, by induction, that the expression of $A_n$ as above, and determine that of $A_{n+1}$. We have \begin{align*}A_{n+1}&=1+2+\cdots+n+(n+1)=S_n+(n+1)\cr &=\frac{n(n+1){2}}+(n+1)=\frac{n(n+1)+2(n+1)}{2}\cr &= \frac{(n+1)(n+2)}{2}=\frac{(n+1)((n+1)+1)}{2}.\end{align*} Thus the induction hypothesis is also true for $A_{n+1}$. This ends the proof.

Similarly, we have $B_1=1=\frac{1(1+1)(2\times 1+1)}{6}$. Assume, by the induction, the $B_n$ is true and prove that $B_{n+1}$ is also true. We have \begin{align*} B_{n+1}&=B_n+ (n+1)^2=\frac{n(n+1)(2n+1)}{6}+(n+1)^2\cr & =\frac{n(n+1)(2n+1)+6(n+1)^2}{6}\cr &=\frac{(n+1)(n(2n+1)+6(n+1))}{6}\cr &=\frac{(n+1)(2n^2+7n+6)}{6}.\end{align*} But $(n+2)(2n+3)=2n^2+7n+6$. Thus \begin{align*} B_{n+1}&=\frac{(n+1)(n+2)(2n+3)}{6}\cr & =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}.\end{align*} This ends the proof.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

spot_img

Related articles

Class 10 Maths: NCERT Solutions

Embarking on the journey of Class 10 Maths is an essential step in every student's academic path. With...

Class 9 Maths: Unlocking the Power of NCERT Solutions

Embarking on the journey of Class 9 Maths can be both exciting and challenging. However, with our meticulously...

Class 8 Maths with NCERT Solutions: A Comprehensive Guide

Are you a student struggling to grasp the concepts of Class 8 Maths? Look no further! Our website...

Class 7 Maths with Comprehensive NCERT Solutions

Looking for Class 7 Maths NCERT solutions? Look no further! Our website offers comprehensive resources to help you...