How to calculate integrals?

Date:

Share post:

We show you how to calculate integrals using elementary methods. In addition, we teach you to study the properties of functions defined by an integral.

It is very important to be able to calculate an integral easily because it interferes in the study of differential equations another important subject of mathematical analysis.

Exercises on how to calculate integrals

We propose several exercises with detailed solutions to teach you how to calculate integrals.

Exercise: Determine the value of the following integrals \begin{align*} I=\int^{\frac{\pi}{2}}_0 e^{2x}\cos(x)dx,\qquad J=\int^{\frac{\pi}{2}}_0 \frac{\sin(\theta)}{2+\cos(\theta)}d\theta. \end{align*}

Solution: To compute $I$ we shall use the integration by parts method. In fact, we can write \begin{align*} I&= \int^{\frac{\pi}{2}}_0 \left(\frac{e^{2x}}{2}\right)’\cos(x)dx\cr &= \left[ \frac{e^{2x}}{2} \cos(x)\right]^{\frac{\pi}{2}}_0- \int^{\frac{\pi}{2}}_0 \frac{e^{2x}}{2}\cos'(x)dx\cr & = \frac{1}{2}+ \frac{1}{2} \int^{\frac{\pi}{2}}_0 e^{2x} \sin(x)dx\cr & = \frac{1}{2}+ \frac{1}{2}\left( \left[ \frac{e^{2x}}{2} \sin(x)\right]^{\frac{\pi}{2}}_0-\int^{\frac{\pi}{2}}_0 \frac{e^{2x}}{2} \sin'(x)dx\right)\cr &= \frac{1}{2}+\frac{e^{\pi}}{4}- \frac{1}{4} \int^{\frac{\pi}{2}}_0 e^{2x}\cos(x)dx\cr &= \frac{1}{2}+\frac{e^{\pi}}{4}- \frac{1}{4} I. \end{align*} We deduce that \begin{align*} I+ \frac{1}{4} I= \frac{1}{2}+\frac{e^{\pi}}{4}. \end{align*} Finally, \begin{align*} I=\frac{2+e^\pi}{5}. \end{align*}

To calculate $J$ we will use the integration by parts technique. We put $t=\cos(\theta)$. We then have $dt=-\sin(\theta)d\theta$. Then \begin{align*} J&=\int^{\cos(\frac{pi}{2})}_{\cos(0)} \frac{-dt}{2+t}\cr &= -\int^0_1 \frac{dt}{2+t}\cr &= \int^1_0 \frac{dt}{2+t}\cr &= \left[\ln(2+t)\right]^1_0\cr & = \ln(3)-\ln(2)=\ln\left(\frac{3}{2}\right). \end{align*}

Exercise: Let consider the function \begin{align*} g(x)=\int^x_{\frac{1}{x}} \frac{\ln(t)}{t}dt. \end{align*}

  • Determine the domain of definition $D_g$ of $g$.
  • Prove that $g$ is differentiable on $D_g$ and compute $g'(x)$ for any $x\in D_g$.
  • Deduce $g$ is the null function.

Solution: 1) We define the function \begin{align*} f(t)=\frac{\ln(t)}{t}. \end{align*} clearly, the function $f$ is only defined in $(0,+\infty)$. From the expression of $g$ we then conclude that $g(x)$ is well defined if and only if $x\in (0,+\infty)$. Hence the domain of definition of $g$ is $D_g=(0,+\infty)$.

2) Denote by $F$ the primitive of $f$, $F$ exists because the function $f$ is continuous on $(0,+\infty)$. We select \begin{align*} F(x)=\int^x_c f(t)dt \end{align*} for any constant $c>0$. The function $F$ is differentiable on $(0,+\infty)$ and $F'(x)=f(x)$ for all $x\in (0,+\infty)$. On the other hand, we can write \begin{align*} g(x)&=\int^x_c f(t)dt+\int^c_{\frac{1}{x}}f(t)dt\cr &= F(x)-F\left(\frac{1}{x}\right) \end{align*} for all $x\in (0,+\infty)$. Hence $g$ is differentiable on $(0,+\infty)$ as composition and sum of differentiable functions. Moreover, for all $x>0,$ \begin{align*} g'(x)&=F'(x)-\left(F\left(\frac{1}{x}\right)\right)’\cr &= f(x)- \left(\frac{1}{x}\right)’ F’\left(\frac{1}{x}\right)\cr &= \frac{\ln(x)}{x}+\frac{1}{x^2} f\left(\frac{1}{x}\right)\cr &= \frac{\ln(x)}{x}-\frac{\ln(x)}{x}=0. \end{align*}

3) An the derivative of $g$ on $(0,+\infty)$ is zero, then $g$ is the constant function on $(0,+\infty)$. But $g(1)=0$. Then $g(x)=0$ for any $x\in (0,+\infty)$.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

spot_img

Related articles

Class 10 Maths: NCERT Solutions

Embarking on the journey of Class 10 Maths is an essential step in every student's academic path. With...

Class 9 Maths: Unlocking the Power of NCERT Solutions

Embarking on the journey of Class 9 Maths can be both exciting and challenging. However, with our meticulously...

Class 8 Maths with NCERT Solutions: A Comprehensive Guide

Are you a student struggling to grasp the concepts of Class 8 Maths? Look no further! Our website...

Class 7 Maths with Comprehensive NCERT Solutions

Looking for Class 7 Maths NCERT solutions? Look no further! Our website offers comprehensive resources to help you...